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Abstract

The search for a universal solution of the equations of motion for a

satellite orbiting an oblate planet is a subject that has merited great

interest because of its theoretical and practical implications� Here� a

complete �rst�order perturbation solution� including the e�ects of the

J� terms in the planet�s potential� is given in terms of standard orbital

parameters� The simple formulas provide a fast method for predict�

ing satellite orbits that is more accurate than the two�body formulas�

These predictions are shown to agree well with those of a completely

numerical code and with actual satellite data� Also� in an appendix� it

is rigorously proven that a satellite having negative mechanical energy

remains for all time within a spherical annulus with radii approximately

equal to the perigee and apogee of its initial osculating ellipse�

	



� Introduction

A characteristic feature of practical orbit prediction is that the engineer may deal with

numerous satellites in a great variety of orbits� Under these circumstances analytical relations

which can quickly approximate an orbit may be far superior to large numerical programs�

While many analytical models have been developed for the arti�cial satellite age� most are

not used in practical orbit prediction because they violate one or more of the following

principles


� The method should provide a solution that is signi�cantly more accurate than the
two�body solution�

� The real physical e�ects of the orbit should be easily distinguishable in the solution�

� The solution should be universal� it should be valid for all orbital parameters�

The problem of predicting the motion of a satellite perturbed only by the oblateness of the

planet has received considerable attention following the �rst launchings of arti�cial satellites

about the Earth� Some of the studies of this problem by means of general perturbation

theories are listed at the end of this paper� Techniques have involved expansions in powers

of
p
J�� averaging processes� the use of spheroidal coordinates� and the edi�ce of Hamiltonian

mechanics� It is not the intention of this present paper to compare the various methodologies

used� Su�ce it to say that many researchers believe a solution which embodies all of the

above principles was not achieved e�g�� see Ta���

The basic procedure used in this paper to solve the di�erential equations of motion is

the perturbation technique known as the Method of Strained Coordinates� This technique

was �rst applied to the title problem by Brenner� Latta� and Weis�eld� Using a mean orbital

plane to specify an arbitrary orbit� they were only able to obtain a partial solution e�g�� the

eccentricity was assumed small and initial conditions were not considered��

�



Here we use coordinates in the true orbital plane to cast the di�erential equations into a

simpli�ed form� as was originally done by Struble�

� Orbital Kinematics

Figure 	 shows the usual reference system of spherical coordinates r� �� ��� The radial

distance r is measured from the center of the planet O to the satellite S� The line O� is in

a direction �xed with respect to an inertial coordinate system� The right ascension � is the

angle measured in the planet�s equatorial plane eastward from the line O�� The declination

or latitude � is the angle measured northward from the equator� The position vector r of

the satellite in the spherical coordinate system is

r � rcos� cos ��b� � rsin� cos ��b� � rsin��b� 	�

where b��b��b�� are orthonormal base vectors �xed in the directions shown�

We can also locate the satellite by its polar coordinates r� �� within a possibly rotating�

orbital plane that instantaneously contains its position and velocity vectors� Here � is the

argument of latitude� i�e�� the angle measured in the orbital plane from the ascending node to

the satellite� The orbital plane is inclined at an angle i to the equatorial plane and intersects

the equatorial plane in the line of nodes� making an angle � with the O� line�

We introduce another orthonormal set of base vectors B��B��B�� which move with the

satellite so that B� is in the direction of the position vector r� B� is also in the orbital plane�

and B� � B��B�� The basis b��b��b�� may be transformed into the basis B��B��B�� by

a succession of three rotations� First the basis b��b��b�� is rotated about the b� direction

by the angle �� next the basis is rotated about the new 	�direction by the angle i� and

�nally the basis is again rotated about the new ��direction by the angle �� The two sets of

base vectors are related by the product of the rotation matrices representing each successive

�



rotation as explained in the book by Danielson�
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The position vector r has only one component in the rotating basis


r � rB� ��

Using the �rst of equations ��� we obtain the components of r in the �xed basis


r � rcos � cos �� sin � cos i sin��b�

�rcos � sin� � sin � cos i cos ��b� � rsin � sin i�b� ��

Equating the components of equations 	� and ��� we can obtain the following relations

among the angles �� �� of the spherical coordinate system and the astronomical angles

i��� ��


sin� � sin � sin i ��

cos � � cos � sec�� ��

The velocity dr�dt of the satellite is obtained by di�erentiating �� with respect to the

time t


dr

dt
�

dr

dt
B� � r

dB�

dt
��

Since the orbital plane must contain the velocity vector� we have to enforce

dB�

dt
�B� � � ��

Substitution of equations �� into equation �� leads to a relationship which uncouples the

equations for ��� and i��


d�

d�
�
tan �

sin i

di

d�
��

�



The velocity �� can then be written

dr

dt
�

dr

dt
B� � r

d�

dt

�
	 � tan � cot i

di

d�

�
B� ��

In the following part of this paper� we will obtain expressions for r��� i��� ���� and

dt�d���� The position and velocity vectors of the satellite then may be calculated from

the formulas in this section� The classical orbital elements p� e� and � are the semilatus

rectum� eccentricity� and argument of perigee of the instantaneous osculating� conic section

determined by the position and velocity vectors� If needed� p��� e��� and ��� can be

obtained from our solution r�� and dt�d���


p �
r�

GM
�
dt
d�

	�

e cos� � �� �
p

r
� 	

e sin� � �� �
p

r�

�
dr

d�

�

� Equations of Motion

The expressions for the kinetic and potential energies per unit mass of a satellite orbiting

around an oblate planet are respectively


T �
	

�

�
�
�
dr

dt

��

� r�
�
d�

dt

��

� r� cos� �

�
d�

dt

��
�
� 	��

V � �GM

r



	 �

J�R
�

�r�

�
	� � sin� �

	�
		�

where G is the gravitational constant� M is the mass of the planet� R is the equatorial radius

of the planet� and J� is the constant coe�cient of the spherical harmonic of degree � and

order � in the planet�s gravitational �eld� Substitution of these equations into Lagrange�s

equations

d

dt

�T � V �

�
�
dq

dt

	 � �

�q
T � V � � � q � r� �� or �

�



results in the following equations of motion


d�r

dt�
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�
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dt

��
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�
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dt
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� ��V
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	��

d
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�
� �
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Initial conditions are established by requiring that at the initial time t� the orbital pa�

rameters of the usual two�body orbit� the conic section determined by the initial position and

velocity vectors� are known� The actual orbit is then tangent to this initial instantaneous

conic section at t� see Figure 	�� Equating the initial position and velocity vectors given by

equations �� and �� to the two�body expressions� we obtain

rt�� �
p�

	 � e� cos�� � ���
� 	��

dr

dt
t�� �

e�h� sin�� � ���

p�
	��

d�

dt
t�� �

h�

r��
h
	 � tan �� cot i�

di
d�
���

i 	��

i��� � i� 	��

���� � �� 	��

Here h� �
p
GMp� is the initial value of the satellite�s speci�c angular momentum about the

center of the planet� and the subscript � on a symbol denotes that the parameter is evaluated

at the initial time t��

We immediately have two integrals of the equations of motion


T � V � constant 	��

r� cos� �
d�

dt
� constant ���

�



Equation 	�� simply states that the mechanical energy of the satellite remains constant�

Now� from equations 	� and 	��

r� cos� �
d�

dt
� r� dr

dt
� b� � h� cos i� �	�

Equation �	� simply states that the component along the polar axis of the speci�c angular

momentum of the satellite remains constant� Inserting equations �� and �� into equation

�	�� we obtain

dt

d�
�

r� cos i

h� cos i�

�
	 � tan � cot i

di

d�

�
���

This allows the independent variable to be changed from t to ��

Letting u � p��r� and using equations ��� �	�� and ���� we can rewrite the remaining

equations of motion 	���	��


di

d�
�
��Ju sin � cos � sin i cos� i

c�

cos i
� �Ju sin� � cos� i

���

d�u

d��
� u �

cos� i

c�
�

J cos� i

c�

�
u�	� � sin� � sin� i� � �udu

d�
sin � cos �	� � cos� i�

��ud
�u

d��
sin� � cos� i� �

�
du

d�

��

sin� � cos� i

� �J

�u sin� � cos� i

c�
���



u
du

d�
cos �� � sin� i� �

d

d�

�
u
du

d�

�
sin � cos� i

�

The terms in ��� with d�u�d�� can be combined� yielding the equivalent equation

d�u

d��
� u �

�
cos� i

c�
�
J cos� i

c�
�u�	 � sin� �� cos� i� ���

��u
du

d�
sin � cos �	� � cos� i�� �

�
du

d�

��

sin� � cos� i�

�
�J�u sin� � cos� i

c�

�
�u� sin � cos� i� u

du

d�
cos �� � sin� i��

�
du

d�

��

sin � cos� i

�
�
��
� ���

�
�
	 �
�Ju sin� � cos� i

c�
�
�J�u� sin� � cos� i

c�

�

�



Here we have introduced the shorthand notation c � cos i�� s � sin i�� J � �J�R
���p�

�
�

� Perturbation Procedure

The di�erential equations ������� are coupled by the nonlinear terms and apparently

cannot be solved analytically� If we expand the right sides of ��� and ��� in a Taylor series

expansion in powers of J and retain only terms up to order J�� the equations simplify to

di

d�
�
��Ju sin � cos � sin i cos� i

c�
�
�J�u� sin i cos� i

c�
sin� � cos � �OJ�� ���

d�u

d��
� u �

cos� i

c�
�

J cos� i

c�

���u sin� � cos� i
c�

� u��	 � sin� �� cos� i� ���

��u
du

d�
sin � cos �	� � cos� i�� �

�
du

d�

��

sin� � cos� i
�

���

�
�J�u sin� � cos� i

c�

�
u���	 � � sin� �	� � cos� i�� � �u sin

� � cos� i

c�

�u
du

d�
sin � cos ��� cos� i� �� �

�
du

d�

��

sin� � cos� i
�
�OJ��

Here the term in the O symbols indicates that� for all su�ciently small J � the error is less

than a constant times J�� The equations ������� are identical to those used as the starting

point in the analysis of Eckstein� et al�

It is reasonable to expect that the solution for u will be arbitrarily close to the two body

solution� 	 � e� cos� � ���� when J is close to zero� This assumption is consistent with

letting

u � 	 � e� cos y � Ju� � J�u� � � � � ���

y � � � �� � Jy� � J�y� � � � � ���

i � i� � Ji� � J�i� � � � � ���

An algorithm for the perturbation procedure is


Let n � 	

Substitute expressions ��������� into the equations of motion �������

�



Equate the coe�cients of Jn

Choose the arbitrary constants so secular terms will not arise�

Solve for the nth order solution

Satisfy the initial conditions �	
���	��

Iterate on n

The calculations were carried out with the symbolic manipulation program MACSYMA�

In this paper we only brie�y outline these calculations� for more details see the theses of

Sagovac and Snider�

Beginning by substituting equations ��� and ��� into ���� and equating the terms

multiplied by J � we obtain

di�
d�
� �sc sin �� � sce�

�
siny � ��� �

sce�
�
siny � ��� �	�

A solution to this equation is

i� �
sc

�
cos �� �

sce�
�
cosy � ��� �

sce�
�
cosy � ��� �K� cos�y � ��� �K� ���

The last two terms may be added because they are to lowest order homogenous solutions

to equation ���� The term multiplied by the constant K� was added to eliminate secular

terms in i�� note that di�erentiating this term with respect to � produces terms multiplied

by J � from equation ���� The constant K� was added to satisfy the initial condition 	���

which implies that i���� � � so

K� � �sc

�
cos ��� � sce�

�
cos��� � ���� sce�

�
cos�� � ����K� cos ���

Substituting equations ������� and ��� into ���� and equating terms multiplied by J

yields

d�u�

d��
� u� � 	� �s

�

�
� e��

�
��s

�

�
� 	

�
�
	

�
�� � �e���s

� � �e��� cos ��

�
e��
�
��s� � �� cos �y � e�

�
		s� � �� cosy � ��� � 	�e

�

�

��
�s� � �� cos�y � ��� ���

�



�



e�
�

�
�s� � ��� �sK�

c

�
cos�y � ���� �sK�

c
� e�

�
�
dy�
d�
� �� �s�

�
cos y � e�

d�y�
d��
sin y

In the above equation� the cos y and sin y terms would produce secular terms � sin y and

� cos y in u�� The choice dy��d� � �s
��� � � will eliminate these possibilities� Integrating

yields

y� �

�
�s�

�
� �

�
� � ��� �K��sin�y � ��� � sin ���� ���

The term multiplied by K� was added to eliminate secular terms in u�� The constant terms

in ��� were added to satisfy the initial condition y��� � �� � ���

A solution to lowest order of equation ��� is then

u� � 	� �s
�

�
� e��

���s�
�
� 	

�
�
	

	�
��s�� � �e��� � �e��� cos ��

�
e�
�

	�
�s� � �� cos �y � e�

��
�		s� � �� cosy � ��� � e�

�

��
��s� � �� cos�y � ��� ���

�



e�
�

�
�s� � ��� �sK�

c

�
cos�y � ���� �sK�

c
�K� cosy � ���

�K� cosy � �� � ��� �K� siny � �� � ���

The term multiplied by K� was added to eliminate secular terms in u�� The terms multiplied

by K� and K� were added to satisfy the initial conditions 	���	���

With all terms in place to deal with secular terms� the calculations are continued by

substituting equations �������� ���� ���� and ��� into ��� and equating terms multiplied

by J�


di�
d�
�



K� �

sce�
�
	�s� � 	��
���s� � ��

�
sin�y � ��� � � � � ���

We have for brevity only indicated on the right side of equation ��� the term that would

produce secular terms in i�� Removal of this term by making its coe�cient zero determines

K�� Equation ��� is then integrated to determine i��

Continuing the procedure by equating the terms multiplied by J� in the expansion of

equation ��� determines y�� K�� and K�� Final values of all the constants are listed in

Appendix I�

	�



Knowing the solution for i��� we can determine ��� by integrating equation �� and

applying the initial condition 	��� The angle �� which increases continuously from an initial

value ��� may be related to the time t by numerically integrating ����

� Solution

Here we assemble the complete solution
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�
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�� J���
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�
�
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�
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�
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�
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�
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h
J�
�
�s� � ��

i
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h
��� � J�

�
�s� � ��

i
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�
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�
cos��� � ���� e�

�
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�
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�
sin �� � e� sin y �

e�
�
siny � ���� e�

�
siny � ���� 	

�
sin ���

�e� sin�� � ���� e�
�
sin��� � ���� e�

�
sin�� � ���

�

�
cJe�
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	��s� � ��
��	�s� � ��s� � ��� sin hJ�

�
�s� � ��

i
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h
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�
�s� � ��

i
�s� � ��

�J�s�	�s� � 	�� cos ���

�
� cJ��

�
�e�s� cos�� � ���� e�s

�

�
cos��� � ���

�s� cos ��� � e�
�

��
�s� � �� � 	

	�
�s� � ��


k �OJ�� J��� ���

t � t� �
	

h�

Z �

��

r�
�
	 � J

�
��s� � ��

�
cos �� � e�s

� � 	�

	�



cos y �
e���s� � ��

�
cosy � ��� �

e���s� � 	�
�

cosy � ���

�
e�
�
s�	�s� � 	�� sin

h
J�
�
�s� � ��

i
sin

h
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�
�s� � ��

i
	��s� � �� �	�

�s� � 	 � s�

�
cos ��� �

e�s
�

�
cos��� � ��� �

e�s
�

�
cos�� � ���

�
d� �
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�

h�

OJ�� J���

In obtaining the equations �����	�� use has been made of trigonometric formulas

to simplify terms containing the factor �s� � � in the denominator� In the form given�
these terms can clearly be seen to approach a �nite limit at the �critical inclination�

i� � sin
��

q
��� � ������ or 		������ Hence the solution is actually valid for all values

of i�� If ji�� sin��

q
���j 	 J � the formulas �����	� can still be used by letting �s��� � J �

or the limiting forms for i� � sin��
q
��� can be used�

To check the solution� we can see if the speci�c mechanical energy 	�� of the satellite

remains constant� Substitution of the solution ������� into equation 	�� plus 		� yields

T � V � �GM	� e���

�p�
� GMJ�R

�	� � sin� ���
�r��

�
GM

p�
OJ��

The right side is easily recognized as the value of the speci�c mechanical energy at the initial

time t��

As a further check on the solution� we can see if it reduces to our previous results for

equatorial and polar orbits� obtained by completely separate derivations Danielson and

Snider� 	����� Setting i� � � and using the independent variable � measured from the line

O�� we �nd that equations �����	� reduce to equations 	������ of our previous paper�

Setting i� � 
�� and using the expansion cosy � Jk� � cos y � Jk sin y� we �nd that

equations �����	� reduce to equations �����	� of our previous paper�

Comparing the terms in the O�symbols� we see that the relative error in equation �	�

may be greater than that of equations �������� Since the underlined terms in equations

������� are of this same order of magnitude� we can drop the underlined terms except

when ������� are used to calculate r in equation �	�� The relative error of our solution

	�



will then still be of order � � ���J
��

If we retain only the two�body solution� the relative error terms will be of the order

�� ���J � Here the error in our solution� as compared to the exact solution of the equations

of motion� should be of the order J times the error in the two�body solution for an Earth

satellite J 	 ���	���

� Comparison of Perturbation� Two�Body� Numerical� and Mea�

sured Solutions

In this section we compare the preceding perturbation solution� the two�body solution� a

completely numerical solution of the di�erential equations� and actual measured satellite

data� for more comparisons see the thesis of Krambeck� The di�erence between the position

vector r determined by the numerical integration code or measured data and the position

vector rref calculated from our perturbation solution or the two�body solution is the error

�r


�r � r� rref

If the errors �r�����i���� in the orbital parameters r� �� i��� are small� we can estimate

�r from equation �� and the linear approximation

�r � �r

�r
�r �

�r

��
�� �

�r

�i
�i�

�r

��
�� ���

It is customary to decompose �r into components ��� ��� ��� along the moving triad B��B��B��


�r � ��B� � ��B� � ��B�

The component �� is called the radial error� �� is the down track error� and �� is the cross

track error� Applying ��� to equation ��� and expressing the base vectors b��b��b�� in

terms of B��B��B��� we obtain the following approximations


�� � �r � �� � r�� � cos i��� � �� � rsin ��i� cos � sin i��� ���

	�



We obtained the numerical integration code UTOPIA from the Colorado Center for

Astrodynamics Research located on the campus of the University of Colorado� The code

was specialized to the di�erential equations used in this paper� We compared the solutions

for an earth satellite with the following initial conditions


r� � �� ����	� km

e� � ������	

�� � 	������

�� � �������

i� � ������

�� � �������

t� � �

These initial conditions represent an essentially polar orbit at an altitude of approximately

	��� kilometers and period about 	�
�
hours� For this satellite the perturbation and numerical

orbits match extremely well while the two�body orbit is grossly erroneous� The magnitude of

the error in r is shown in Figure �� Note that the relative error in our perturbation solution

is ���J�� � ���� and that this error is 	�	J times the error in the two�body solution�

We obtained measured satellite data from the First Satellite Control Squadron located

at Falcon Air Force Base� Colorado� A near earth satellite processed the following initial

conditions


r� � �� ������ km

e� � �������	

�� � 	���	��

�� � �����

i� � ����	�

	�



�� � ���	��

t� � ����Z �� July 	���

Again� the perturbation orbit is far superior to the two�body orbit� The radial� down track�

and cross track errors ��� ��� ��� are shown in Figure �� Note that although the perturbation

solution produces only a small improvement in the radial error� this error is negligible in

comparison to the down track error�

� Conclusions

Our solution embodies the principles outlined in the introduction� The relative error of our

solution is of order �� ���J
�� which is a factor of J times the relative error of the two�body

solution� our solution loses its validity after an angular change �� ��� of order 	�J
�� which

is a factor of �

J
longer than the interval of validity of the two�body solution� Secondly� our

solution is in terms of classical orbital elements� no transformation to an alternative non�

physical set of elements is required� Finally� our solution is free of singularities for all values

of the initial orbital parameters� including elliptic� parabolic� and hyperbolic orbits�

Our formulas should agree closely with satellite orbits whose dominant perturbation is

the planet�s oblateness� Of course� the e�ects of higher�order terms in these expansions�

higher�order terms in the planet�s potential� and of other perturbation forces may also be

important� The formulas will have to be amended to include these additional e�ects�

APPENDIX I	 Values of the Constants K�
K�

K� �
cse�

�
�	�s� � 	��
���s� � ��

K� � �sc

�
cos ��� � sce�

�
cos��� � ���� sce�

�
cos�� � ��� �

cse�
�
	�s� � 	��
���s� � �� cos ���

K� �
e�
�
���s� � ���s� � ���s� � 		��

���s� � ���

	�



K� � e�
�	�e�

�
� ��s� � 	�e�

�
� ��s� � ���

���s� � ��

K� �
e�
�

	�
��s� � �� cos��� � ���� �

e�
�

��
�s� � �� cos��� � ����

�e�s� �K�� cos�� � ��� �
e�
�
s� � �� cos��� � ��� �

e�
�

�
��s� � �� cos ���

� 	
	�
���� e�

�
�s� � �e�

�
� cos ��� �

	

	�
	�e�

�
� 	��s� � e�

�
� 	�

K� � �
e��
�
�s� � �� sin��� � ���� �

e��
	�
��s� � 	� sin��� � ����

�
	

�
�e��s� � 	� � �K�� sin�� � ��� �

e�
�
�s� � �� sin�� � ���

�
e�
�
��s� � �� sin��� � ��� �

e��
�
�s� � 	� sin ��� �

	

�
���e�

�
� ��s� � �e�

�
� sin ���

APPENDIX II	 Rigorous Bounds on the Orbit

It follows from 	���	�� that

T � V �
	

�

�
dr

dt

��

�
r

�

d�r

dt�
� GM

�r
�
GMJ�R

�

�r�
	� � sin� ��

This can be rewritten in the form

d

dr

�
�r�

�
dr

dt

��
�
� � �T � V �r � �GM �

GMJ�R
�

r�
� sin� � � 	�

from whence it follows that

d

dr

�
�r�

�
dr

dt

��
�
� � �T � V �r � �GM �

�GMJ�R
�

r�

Integrating from rt�� to rt� yields

r�
�
dr

dt

��

� �T � V �r� � �GMr � �GMJ�R
�

r
� h�

�
�
�h�

�
J�R

�

p�r�

It follows that

� 	 �T � V �r� � �GMr � h�

��	�
�J�R

�

p�r�
� ���

	�



When T � V 	 �� the quadratic polynomial on the right side of ��� has the roots exact

values can be found from the quadratic formula�

rmin �
p�
	 � e�

�	 �OJ��� � rmax �
p�
	� e�

�	 �OJ���

Hence a satellite having negative mechanical energy remains for all time within the spherical

annulus rmin 	 r 	 rmax� Since the position vector is bounded� we can invoke the recurrence

theorem� i�e�� the satellite will come as close as desired to its initial position in a su�ciently

long period of time as shown by Poincar�e�� Furthermore� we are guaranteed of the validity

of supressing secular terms to describe the orbit via perturbation analysis�
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